What Is Phenol Solution Used for C Diff
1. Hall I, O'Toole E. Intestinal flora in newborn infants with a description of a new pathogenic anaerobe, Bacillus difficilis. Am J Dis Child. 1935;49:390–402. [Google Scholar]
2. Bartlett JG, Chang TW, Gurwith M, et al. Antibiotic-associated pseudo-membranous colitis due to toxin-producing clostridia. N Engl J Med. 1978;298(10):531–534. [PubMed] [Google Scholar]
3. Bartlett JG, Onderdonk AB, Cisneros RL, et al. Clindamycin-associated colitis due to a toxin-producing species of Clostridium in hamsters. J Infect Dis. 1977;136(5):701–705. [PubMed] [Google Scholar]
4. Jump RL, Pultz MJ, Donskey CJ. Vegetative Clostridium difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: a potential mechanism to explain the association between proton pump inhibitors and C. difficile-associated diarrhea? Antimicrob Agents Chemother. 2007;51(8):2883–2887. [PMC free article] [PubMed] [Google Scholar]
5. Arroyo LG, Rousseau J, Willey BM, et al. Use of a selective enrichment broth to recover Clostridium difficile from stool swabs stored under different conditions. J Clin Microbiol. 2005;43(10):5341–5343. [PMC free article] [PubMed] [Google Scholar]
6. Riggs MM, Sethi AK, Zabarsky TF, et al. Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents. Clin Infect Dis. 2007;45(8):992–998. [PubMed] [Google Scholar]
7. Hink T, Burnham CA, Dubberke ER. A systematic evaluation of methods to optimize culture-based recovery of Clostridium difficile from stool specimens. Anaerobe. 2013;19:39–43. [PMC free article] [PubMed] [Google Scholar]
8. Jackson S, Calos M, Myers A, et al. Analysis of proline reduction in the nosocomial pathogen Clostridium difficile. J Bacteriol. 2006;188(24):8487–8495. [PMC free article] [PubMed] [Google Scholar]
9. Wilson KH. Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. J Clin Microbiol. 1983;18(4):1017–1019. [PMC free article] [PubMed] [Google Scholar]
10. Wilson KH, Kennedy MJ, Fekety FR. Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridium difficile. J Clin Microbiol. 1982;15(3):443–446. [PMC free article] [PubMed] [Google Scholar]
11. Dawson LF, Stabler RA, Wren BW. Assessing the role of p-cresol tolerance in Clostridium difficile. J Med Microbiol. 2008;57(Pt 6):745–749. [PubMed] [Google Scholar]
12. Sivsammye G, Sims HV. Presumptive identification of Clostridium difficile by detection of p-cresol in prepared peptone yeast glucose broth supplemented with p-hydroxyphenylacetic acid. J Clin Microbiol. 1990;28(8):1851–1853. [PMC free article] [PubMed] [Google Scholar]
13. Fedorko DP, Williams EC. Use of cycloserine-cefoxitin-fructose agar and L-proline-aminopeptidase (PRO Discs) in the rapid identification of Clostridium difficile. J Clin Microbiol. 1997;35(5):1258–1259. [PMC free article] [PubMed] [Google Scholar]
14. Chen JH, Cheng VC, Wong OY, et al. The importance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for correct identification of Clostridium difficile isolated from chromID C. difficile chromogenic agar. J Microbiol Immunol Infect. 2016 [PubMed] [Google Scholar]
15. Coltella L, Mancinelli L, Onori M, et al. Advancement in the routine identification of anaerobic bacteria by MALDI-TOF mass spectrometry. Eur J Clin Microbiol Infect Dis. 2013;32(9):1183–1192. [PubMed] [Google Scholar]
16. Kim YJ, Kim SH, Park HJ, et al. MALDI-TOF MS is more accurate than VITEK II ANC card and API Rapid ID 32 A system for the identification of Clostridium species. Anaerobe. 2016;40:73–75. [PubMed] [Google Scholar]
17. Edwards AN, McBride SM. Isolating and Purifying Clostridium difficile Spores. Methods Mol Biol. 2016;1476:117–128. [PMC free article] [PubMed] [Google Scholar]
18. Perez J, Springthorpe VS, Sattar SA. Clospore: a liquid medium for producing high titers of semi-purified spores of Clostridium difficile. J AOAC Int. 2011;94(2):618–626. [PubMed] [Google Scholar]
19. Bouillaut L, Dubois T, Sonenshein AL, et al. Integration of metabolism and virulence in Clostridium difficile. Res Microbiol. 2015;166(4):375–383. [PMC free article] [PubMed] [Google Scholar]
20. Darkoh C, Dupont HL, Kaplan HB. Novel one-step method for detection and isolation of active-toxin- producing Clostridium difficile strains directly from stool samples. J Clin Microbiol. 2011;49(12):4219–4224. [PMC free article] [PubMed] [Google Scholar]
21. McDonald LC, Killgore GE, Thompson A, et al. An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med. 2005;353(23):2433–2441. [PubMed] [Google Scholar]
22. Corkill JE, Graham R, Hart CA, et al. Pulsed-field gel electrophoresis of degradation-sensitive DNAs from Clostridium difficile PCR ribotype 1 strains. J Clin Microbiol. 2000;38(7):2791–2792. [PMC free article] [PubMed] [Google Scholar]
23. Stubbs SL, Brazier JS, O'Neill GL, et al. PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol. 1999;37(2):461–463. [PMC free article] [PubMed] [Google Scholar]
24. Griffiths D, Fawley W, Kachrimanidou M, et al. Multilocus sequence typing of Clostridium difficile. J Clin Microbiol. 2010;48(3):770–778. [PMC free article] [PubMed] [Google Scholar]
25. Curry SR, Marsh JW, Muto CA, et al. tcdC genotypes associated with severe TcdC truncation in an epidemic clone and other strains of Clostridium difficile. J Clin Microbiol. 2007;45(1):215–221. [PMC free article] [PubMed] [Google Scholar]
26. Dingle KE, Griffiths D, Didelot X, et al. Clinical Clostridium difficile: clonality and pathogenicity locus diversity. PLoS One. 2011;6(5):e19993. [PMC free article] [PubMed] [Google Scholar]
27. Clabots CR, Johnson S, Bettin KM, et al. Development of a rapid and efficient restriction endonuclease analysis typing system for Clostridium difficile and correlation with other typing systems. J Clin Microbiol. 1993;31(7):1870–1875. [PMC free article] [PubMed] [Google Scholar]
28. Eyre DW, Cule ML, Wilson DJ, et al. Diverse sources of C difficile infection identified on whole-genome sequencing. N Engl J Med. 2013;369(13):1195–1205. [PMC free article] [PubMed] [Google Scholar]
29. Marsh JW, O'Leary MM, Shutt KA, et al. Multilocus variable-number tandem-repeat analysis for investigation of Clostridium difficile transmission in Hospitals. J Clin Microbiol. 2006;44(7):2558–2566. [PMC free article] [PubMed] [Google Scholar]
30. van den Berg RJ, Schaap I, Templeton KE, et al. Typing and subtyping of Clostridium difficile isolates by using multiple-locus variable-number tandem-repeat analysis. J Clin Microbiol. 2007;45(3):1024–1028. [PMC free article] [PubMed] [Google Scholar]
31. al Saif N, Brazier JS. The distribution of Clostridium difficile in the environment of South Wales. J Med Microbiol. 1996;45(2):133–137. [PubMed] [Google Scholar]
32. Moono P, Foster NF, Hampson DJ, et al. Clostridium difficile Infection in Production Animals and Avian Species: A Review. Foodborne Pathog Dis. 2016 [PubMed] [Google Scholar]
33. Hammitt MC, Bueschel DM, Keel MK, et al. A possible role for Clostridium difficile in the etiology of calf enteritis. Vet Microbiol. 2008;127(3–4):343–352. [PMC free article] [PubMed] [Google Scholar]
34. Larson HE, Price AB, Honour P, et al. Clostridium difficile and the aetiology of pseudomembranous colitis. Lancet. 1978;1(8073):1063–1066. [PubMed] [Google Scholar]
35. Sun X, Wang H, Zhang Y, et al. Mouse relapse model of Clostridium difficile infection. Infect Immun. 2011;79(7):2856–2864. [PMC free article] [PubMed] [Google Scholar]
36. Curry SR, Marsh JW, Schlackman JL, et al. Prevalence of Clostridium difficile in uncooked ground meat products from Pittsburgh, Pennsylvania. Appl Environ Microbiol. 2012;78(12):4183–4186. [PMC free article] [PubMed] [Google Scholar]
37. Weese JS, Avery BP, Rousseau J, et al. Detection and enumeration of Clostridium difficile spores in retail beef and pork. Appl Environ Microbiol. 2009;75(15):5009–5011. [PMC free article] [PubMed] [Google Scholar]
38. Marsh JW. Counterpoint: Is Clostridium difficile a food-borne disease? Anaerobe. 2013;21:62–63. [PubMed] [Google Scholar]
39. Marsh JW, Tulenko MM, Shutt KA, et al. Multi-locus variable number tandem repeat analysis for investigation of the genetic association of Clostridium difficile isolates from food, food animals and humans. Anaerobe. 2011;17(4):156–160. [PubMed] [Google Scholar]
40. Jury LA, Sitzlar B, Kundrapu S, et al. Outpatient healthcare settings and transmission of Clostridium difficile. PLoS One. 2013;8(7):e70175. [PMC free article] [PubMed] [Google Scholar]
41. Kim KH, Fekety R, Batts DH, et al. Isolation of Clostridium difficile from the environment and contacts of patients with antibiotic-associated colitis. J Infect Dis. 1981;143(1):42–50. [PubMed] [Google Scholar]
42. Fawley WN, Underwood S, Freeman J, et al. Efficacy of hospital cleaning agents and germicides against epidemic Clostridium difficile strains. Infect Control Hosp Epidemiol. 2007;28(8):920–925. [PubMed] [Google Scholar]
43. Lawley TD, Clare S, Deakin LJ, et al. Use of purified Clostridium difficile spores to facilitate evaluation of health care disinfection regimens. Appl Environ Microbiol. 2010;76(20):6895–6900. [PMC free article] [PubMed] [Google Scholar]
44. Perez J, Springthorpe VS, Sattar SA. Activity of selected oxidizing microbicides against the spores of Clostridium difficile: relevance to environmental control. Am J Infect Control. 2005;33(6):320–325. [PubMed] [Google Scholar]
45. Shaughnessy MK, Micielli RL, DePestel DD, et al. Evaluation of hospital room assignment and acquisition of Clostridium difficile infection. Infect Control Hosp Epidemiol. 2011;32(3):201–206. [PubMed] [Google Scholar]
46. Freedberg DE, Salmasian H, Cohen B, et al. Receipt of Antibiotics in Hospitalized Patients and Risk for Clostridium difficile Infection in Subsequent Patients Who Occupy the Same Bed. JAMA Intern Med. 2016;176(12):1801–1808. [PMC free article] [PubMed] [Google Scholar]
47. Muto CA, Blank MK, Marsh JW, et al. Control of an outbreak of infection with the hypervirulent Clostridium difficile BI strain in a university hospital using a comprehensive "bundle" approach. Clin Infect Dis. 2007;45(10):1266–1273. [PubMed] [Google Scholar]
48. Deshpande A, Mana TS, Cadnum JL, et al. Evaluation of a sporicidal peracetic acid/hydrogen peroxide-based daily disinfectant cleaner. Infect Control Hosp Epidemiol. 2014;35(11):1414–1416. [PubMed] [Google Scholar]
49. Nerandzic MM, Cadnum JL, Pultz MJ, et al. Evaluation of an automated ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens in hospital rooms. BMC Infect Dis. 2010;10:197. [PMC free article] [PubMed] [Google Scholar]
50. Davies A, Pottage T, Bennett A, et al. Gaseous and air decontamination technologies for Clostridium difficile in the healthcare environment. J Hosp Infect. 2011;77(3):199–203. [PubMed] [Google Scholar]
51. Levin J, Riley LS, Parrish C, et al. The effect of portable pulsed xenon ultraviolet light after terminal cleaning on hospital-associated Clostridium difficile infection in a community hospital. Am J Infect Control. 2013;41(8):746–748. [PubMed] [Google Scholar]
52. Miller R, Simmons S, Dale C, et al. Utilization and impact of a pulsed-xenon ultraviolet room disinfection system and multidisciplinary care team on Clostridium difficile in a long-term acute care facility. Am J Infect Control. 2015;43(12):1350–1353. [PubMed] [Google Scholar]
53. Boyce JM, Havill NL, Otter JA, et al. Impact of hydrogen peroxide vapor room decontamination on Clostridium difficile environmental contamination and transmission in a healthcare setting. Infect Control Hosp Epidemiol. 2008;29(8):723–729. [PubMed] [Google Scholar]
54. Bouza E, Martin A, Van den Berg RJ, et al. Laboratory-acquired Clostridium difficile polymerase chain reaction ribotype 027: a new risk for laboratory workers? Clin Infect Dis. 2008;47(11):1493–1494. [PubMed] [Google Scholar]
55. Nakamura S, Mikawa M, Nakashio S, et al. Isolation of Clostridium difficile from the feces and the antibody in sera of young and elderly adults. Microbiol Immunol. 1981;25(4):345–351. [PubMed] [Google Scholar]
56. Ozaki E, Kato H, Kita H, et al. Clostridium difficile colonization in healthy adults: transient colonization and correlation with enterococcal colonization. J Med Microbiol. 2004;53(Pt 2):167–172. [PubMed] [Google Scholar]
57. Galdys AL, Nelson JS, Shutt KA, et al. Prevalence and duration of asymptomatic Clostridium difficile carriage among healthy subjects in Pittsburgh, Pennsylvania. J Clin Microbiol. 2014;52(7):2406–2409. [PMC free article] [PubMed] [Google Scholar]
58. McFarland LV, Mulligan ME, Kwok RY, et al. Nosocomial acquisition of Clostridium difficile infection. N Engl J Med. 1989;320(4):204–210. [PubMed] [Google Scholar]
59. Clabots CR, Johnson S, Olson MM, et al. Acquisition of Clostridium difficile by hospitalized patients: evidence for colonized new admissions as a source of infection. J Infect Dis. 1992;166(3):561–567. [PubMed] [Google Scholar]
60. Lanzas C, Dubberke ER, Lu Z, et al. Epidemiological model for Clostridium difficile transmission in healthcare settings. Infect Control Hosp Epidemiol. 2011;32(6):553–561. [PMC free article] [PubMed] [Google Scholar]
61. Curry SR, Muto CA, Schlackman JL, et al. Use of multilocus variable number of tandem repeats analysis genotyping to determine the role of asymptomatic carriers in Clostridium difficile transmission. Clin Infect Dis. 2013;57(8):1094–1102. [PMC free article] [PubMed] [Google Scholar]
62. Loo VG, Bourgault AM, Poirier L, et al. Host and pathogen factors for Clostridium difficile infection and colonization. N Engl J Med. 2011;365(18):1693–1703. [PubMed] [Google Scholar]
63. Longtin Y, Paquet-Bolduc B, Gilca R, et al. Effect of Detecting and Isolating Clostridium difficile Carriers at Hospital Admission on the Incidence of C difficile Infections: A Quasi-Experimental Controlled Study. JAMA Intern Med. 2016;176(6):796–804. [PubMed] [Google Scholar]
64. Manabe YC, Vinetz JM, Moore RD, et al. Clostridium difficile colitis: an efficient clinical approach to diagnosis. Ann Intern Med. 1995;123(11):835–840. [PubMed] [Google Scholar]
65. Wanahita A, Goldsmith EA, Marino BJ, et al. Clostridium difficile infection in patients with unexplained leukocytosis. Am J Med. 2003;115(7):543–546. [PubMed] [Google Scholar]
66. Wanahita A, Goldsmith EA, Musher DM. Conditions associated with leukocytosis in a tertiary care hospital, with particular attention to the role of infection caused by Clostridium difficile. Clin Infect Dis. 2002;34(12):1585–1592. [PubMed] [Google Scholar]
67. Dallal RM, Harbrecht BG, Boujoukas AJ, et al. Fulminant Clostridium difficile: an underappreciated and increasing cause of death and complications. Ann Surg. 2002;235(3):363–372. [PMC free article] [PubMed] [Google Scholar]
68. Fujitani S, George WL, Murthy AR. Comparison of clinical severity score indices for Clostridium difficile infection. Infect Control Hosp Epidemiol. 2011;32(3):220–228. [PubMed] [Google Scholar]
69. Na X, Martin AJ, Sethi S, et al. A Multi-Center Prospective Derivation and Validation of a Clinical Prediction Tool for Severe Clostridium difficile Infection. PLoS One. 2015;10(4):e0123405. [PMC free article] [PubMed] [Google Scholar]
70. Miller MA, Louie T, Mullane K, et al. Derivation and validation of a simple clinical bedside score (ATLAS) for Clostridium difficile infection which predicts response to therapy. BMC Infect Dis. 2013;13:148. [PMC free article] [PubMed] [Google Scholar]
71. Hu MY, Katchar K, Kyne L, et al. Prospective derivation and validation of a clinical prediction rule for recurrent Clostridium difficile infection. Gastroenterology. 2009;136(4):1206–1214. [PubMed] [Google Scholar]
72. Villano SA, Seiberling M, Tatarowicz W, et al. Evaluation of an oral suspension of VP20621, spores of nontoxigenic Clostridium difficile strain M3, in healthy subjects. Antimicrob Agents Chemother. 2012;56(10):5224–5229. [PMC free article] [PubMed] [Google Scholar]
73. Samore MH, DeGirolami PC, Tlucko A, et al. Clostridium difficile colonization and diarrhea at a tertiary care hospital. Clin Infect Dis. 1994;18(2):181–187. [PubMed] [Google Scholar]
74. Shim JK, Johnson S, Samore MH, et al. Primary symptomless colonisation by Clostridium difficile and decreased risk of subsequent diarrhoea. Lancet. 1998;351(9103):633–636. [PubMed] [Google Scholar]
75. Kutty PK, Benoit SR, Woods CW, et al. Assessment of Clostridium difficile-associated disease surveillance definitions, North Carolina, 2005. Infect Control Hosp Epidemiol. 2008;29(3):197–202. [PubMed] [Google Scholar]
76. McDonald LC, Coignard B, Dubberke E, et al. Recommendations for surveillance of Clostridium difficile-associated disease. Infect Control Hosp Epidemiol. 2007;28(2):140–145. [PubMed] [Google Scholar]
77. Kelly CP, Pothoulakis C, LaMont JT. Clostridium difficile colitis. N Engl J Med. 1994;330(4):257–262. [PubMed] [Google Scholar]
78. Brown E, Talbot GH, Axelrod P, et al. Risk factors for Clostridium difficile toxin-associated diarrhea. Infect Control Hosp Epidemiol. 1990;11(6):283–290. [PubMed] [Google Scholar]
79. McDonald LC, Owings M, Jernigan DB. Clostridium difficile infection in patients discharged from US short-stay hospitals, 1996–2003. Emerg Infect Dis. 2006;12(3):409–415. [PMC free article] [PubMed] [Google Scholar]
80. Zilberberg MD, Shorr AF, Kollef MH. Increase in adult Clostridium difficile-related hospitalizations and case-fatality rate, United States, 2000–2005. Emerg Infect Dis. 2008;14(6):929–931. [PMC free article] [PubMed] [Google Scholar]
81. Loo VG, Poirier L, Miller MA, et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med. 2005;353(23):2442–2449. [PubMed] [Google Scholar]
82. Muto CA, Pokrywka M, Shutt K, et al. A large outbreak of Clostridium difficile-associated disease with an unexpected proportion of deaths and colectomies at a teaching hospital following increased fluoroquinolone use. Infect Control Hosp Epidemiol. 2005;26(3):273–280. [PubMed] [Google Scholar]
83. Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol. 2009;7(7):526–536. [PubMed] [Google Scholar]
84. See I, Mu Y, Cohen J, et al. NAP1 strain type predicts outcomes from Clostridium difficile infection. Clin Infect Dis. 2014;58(10):1394–1400. [PMC free article] [PubMed] [Google Scholar]
85. Walker AS, Eyre DW, Wyllie DH, et al. Relationship between bacterial strain type, host biomarkers, and mortality in Clostridium difficile infection. Clin Infect Dis. 2013;56(11):1589–1600. [PMC free article] [PubMed] [Google Scholar]
86. Sirard S, Valiquette L, Fortier LC. Lack of association between clinical outcome of Clostridium difficile infections, strain type, and virulence-associated phenotypes. J Clin Microbiol. 2011;49(12):4040–4046. [PMC free article] [PubMed] [Google Scholar]
87. Cloud J, Noddin L, Pressman A, et al. Clostridium difficile strain NAP-1 is not associated with severe disease in a nonepidemic setting. Clin Gastroenterol Hepatol. 2009;7(8):868–873. e862. [PubMed] [Google Scholar]
88. Walk ST, Micic D, Jain R, et al. Clostridium difficile ribotype does not predict severe infection. Clin Infect Dis. 2012;55(12):1661–1668. [PMC free article] [PubMed] [Google Scholar]
89. Carlson PE, Jr, Walk ST, Bourgis AE, et al. The relationship between phenotype, ribotype, and clinical disease in human Clostridium difficile isolates. Anaerobe. 2013;24:109–116. [PMC free article] [PubMed] [Google Scholar]
90. Aitken SL, Alam MJ, Khaleduzzaman M, et al. In the Endemic Setting, Clostridium difficile Ribotype 027 Is Virulent But Not Hypervirulent. Infect Control Hosp Epidemiol. 2015;36(11):1318–1323. [PMC free article] [PubMed] [Google Scholar]
91. Marsh JW, Arora R, Schlackman JL, et al. Association of relapse of Clostridium difficile disease with BI/NAP1/027. J Clin Microbiol. 2012;50(12):4078–4082. [PMC free article] [PubMed] [Google Scholar]
92. Petrella LA, Sambol SP, Cheknis A, et al. Decreased cure and increased recurrence rates for Clostridium difficile infection caused by the epidemic C difficile BI strain. Clin Infect Dis. 2012;55(3):351–357. [PMC free article] [PubMed] [Google Scholar]
93. Severe Clostridium difficile-associated disease in populations previously at low risk--four states, 2005. MMWR Morb Mortal Wkly Rep. 2005;54(47):1201–1205. [PubMed] [Google Scholar]
94. Surveillance for community-associated Clostridium difficile--Connecticut, 2006. MMWR Morb Mortal Wkly Rep. 2008;57(13):340–343. [PubMed] [Google Scholar]
95. Lambert PJ, Dyck M, Thompson LH, et al. Population-based surveillance of Clostridium difficile infection in Manitoba, Canada, by using interim surveillance definitions. Infect Control Hosp Epidemiol. 2009;30(10):945–951. [PubMed] [Google Scholar]
96. Kutty PK, Woods CW, Sena AC, et al. Risk factors for and estimated incidence of community-associated Clostridium difficile infection, North Carolina, USA. Emerg Infect Dis. 2010;16(2):197–204. [PMC free article] [PubMed] [Google Scholar]
97. Fellmeth G, Yarlagadda S, Iyer S. Epidemiology of community-onset Clostridium difficile infection in a community in the South of England. J Infect Public Health. 2010;3(3):118–123. [PubMed] [Google Scholar]
98. Hirshon JM, Thompson AD, Limbago B, et al. Clostridium difficile infection in outpatients, Maryland and Connecticut, USA, 2002–2007. Emerg Infect Dis. 2011;17(10):1946–1949. [PMC free article] [PubMed] [Google Scholar]
99. Mitu-Pretorian OM, Forgacs B, Qumruddin A, et al. Outcomes of patients who develop symptomatic Clostridium difficile infection after solid organ transplantation. Transplant Proc. 2010;42(7):2631–2633. [PubMed] [Google Scholar]
100. Lee JT, Kelly RF, Hertz MI, et al. Clostridium difficile infection increases mortality risk in lung transplant recipients. J Heart Lung Transplant. 2013;32(10):1020–1026. [PubMed] [Google Scholar]
101. Dubberke ER, Olsen MA. Burden of Clostridium difficile on the healthcare system. Clin Infect Dis. 2012;55(Suppl 2):S88–92. [PMC free article] [PubMed] [Google Scholar]
102. Dubberke ER, Reske KA, Olsen MA, et al. Short- and long-term attributable costs of Clostridium difficile-associated disease in nonsurgical inpatients. Clin Infect Dis. 2008;46(4):497–504. [PubMed] [Google Scholar]
103. Kyne L, Hamel MB, Polavaram R, et al. Health care costs and mortality associated with nosocomial diarrhea due to Clostridium difficile. Clin Infect Dis. 2002;34(3):346–353. [PubMed] [Google Scholar]
104. Lessa FC, Winston LG, McDonald LC, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372(24):2369–2370. [PubMed] [Google Scholar]
105. Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370(13):1198–1208. [PMC free article] [PubMed] [Google Scholar]
106. Miller BA, Chen LF, Sexton DJ, et al. Comparison of the burdens of hospital-onset, healthcare facility-associated Clostridium difficile Infection and of healthcare-associated infection due to methicillin-resistant Staphylococcus aureus in community hospitals. Infect Control Hosp Epidemiol. 2011;32(4):387–390. [PubMed] [Google Scholar]
108. Braun V, Hundsberger T, Leukel P, et al. Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene. 1996;181(1–2):29–38. [PubMed] [Google Scholar]
109. Hundsberger T, Braun V, Weidmann M, et al. Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile. Eur J Biochem. 1997;244(3):735–742. [PubMed] [Google Scholar]
110. Soehn F, Wagenknecht-Wiesner A, Leukel P, et al. Genetic rearrangements in the pathogenicity locus of Clostridium difficile strain 8864--implications for transcription, expression and enzymatic activity of toxins A and B. Mol Gen Genet. 1998;258(3):222–232. [PubMed] [Google Scholar]
111. Cohen SH, Tang YJ, Silva J., Jr Analysis of the pathogenicity locus in Clostridium difficile strains. J Infect Dis. 2000;181(2):659–663. [PubMed] [Google Scholar]
112. Voth DE, Ballard JD. Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev. 2005;18(2):247–263. [PMC free article] [PubMed] [Google Scholar]
113. LaFrance ME, Farrow MA, Chandrasekaran R, et al. Identification of an epithelial cell receptor responsible for Clostridium difficile TcdB-induced cytotoxicity. Proc Natl Acad Sci U S A. 2015;112(22):7073–7078. [PMC free article] [PubMed] [Google Scholar]
114. Tao L, Zhang J, Meraner P, et al. Frizzled proteins are colonic epithelial receptors for C difficile toxin B. Nature. 2016;538(7625):350–355. [PMC free article] [PubMed] [Google Scholar]
115. Lyras D, O'Connor JR, Howarth PM, et al. Toxin B is essential for virulence of Clostridium difficile. Nature. 2009;458(7242):1176–1179. [PMC free article] [PubMed] [Google Scholar]
116. Carter GP, Chakravorty A, Pham Nguyen TA, et al. Defining the Roles of TcdA and TcdB in Localized Gastrointestinal Disease, Systemic Organ Damage, and the Host Response during Clostridium difficile Infections. MBio. 2015;6(3):e00551. [PMC free article] [PubMed] [Google Scholar]
117. Johnson S, Sambol SP, Brazier JS, et al. International typing study of toxin A-negative, toxin B-positive Clostridium difficile variants. J Clin Microbiol. 2003;41(4):1543–1547. [PMC free article] [PubMed] [Google Scholar]
118. Moncrief JS, Zheng L, Neville LM, et al. Genetic characterization of toxin A-negative, toxin B-positive Clostridium difficile isolates by PCR. J Clin Microbiol. 2000;38(8):3072–3075. [PMC free article] [PubMed] [Google Scholar]
119. Samra Z, Talmor S, Bahar J. High prevalence of toxin A-negative toxin B-positive Clostridium difficile in hospitalized patients with gastrointestinal disease. Diagn Microbiol Infect Dis. 2002;43(3):189–192. [PubMed] [Google Scholar]
120. Hammond GA, Lyerly DM, Johnson JL. Transcriptional analysis of the toxigenic element of Clostridium difficile. Microb Pathog. 1997;22(3):143–154. [PubMed] [Google Scholar]
121. Dupuy B, Govind R, Antunes A, et al. Clostridium difficile toxin synthesis is negatively regulated by TcdC. J Med Microbiol. 2008;57(Pt 6):685–689. [PubMed] [Google Scholar]
122. Matamouros S, England P, Dupuy B. Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol. 2007;64(5):1274–1288. [PubMed] [Google Scholar]
123. MacCannell DR, Louie TJ, Gregson DB, et al. Molecular analysis of Clostridium difficile PCR ribotype 027 isolates from Eastern and Western Canada. J Clin Microbiol. 2006;44(6):2147–2152. [PMC free article] [PubMed] [Google Scholar]
124. Warny M, Pepin J, Fang A, et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet. 2005;366(9491):1079–1084. [PubMed] [Google Scholar]
125. Barbut F, Decre D, Lalande V, et al. Clinical features of Clostridium difficile-associated diarrhoea due to binary toxin (actin-specific ADP-ribosyltransferase)-producing strains. J Med Microbiol. 2005;54(Pt 2):181–185. [PubMed] [Google Scholar]
126. McEllistrem MC, Carman RJ, Gerding DN, et al. A hospital outbreak of Clostridium difficile disease associated with isolates carrying binary toxin genes. Clin Infect Dis. 2005;40(2):265–272. [PubMed] [Google Scholar]
127. Rupnik M, Grabnar M, Geric B. Binary toxin producing Clostridium difficile strains. Anaerobe. 2003;9(6):289–294. [PubMed] [Google Scholar]
128. Geric B, Carman RJ, Rupnik M, et al. Binary toxin-producing, large clostridial toxin-negative Clostridium difficile strains are enterotoxic but do not cause disease in hamsters. J Infect Dis. 2006;193(8):1143–1150. [PubMed] [Google Scholar]
129. Joost I, Speck K, Herrmann M, et al. Characterisation of Clostridium difficile isolates by slpA and tcdC gene sequencing. Int J Antimicrob Agents. 2009;33(Suppl 1):S13–18. [PubMed] [Google Scholar]
130. Akerlund T, Persson I, Unemo M, et al. Increased sporulation rate of epidemic Clostridium difficile Type 027/NAP1. J Clin Microbiol. 2008;46(4):1530–1533. [PMC free article] [PubMed] [Google Scholar]
131. Burns DA, Heeg D, Cartman ST, et al. Reconsidering the sporulation characteristics of hypervirulent Clostridium difficile BI/NAP1/027. PLoS One. 2011;6(9):e24894. [PMC free article] [PubMed] [Google Scholar]
132. Curry SR, Marsh JW, Shutt KA, et al. High frequency of rifampin resistance identified in an epidemic Clostridium difficile clone from a large teaching hospital. Clin Infect Dis. 2009;48(4):425–429. [PMC free article] [PubMed] [Google Scholar]
133. Chang JY, Antonopoulos DA, Kalra A, et al. Decreased diversity of the fecal Microbiome in recurrent Clostridium difficile-associated diarrhea. J Infect Dis. 2008;197(3):435–438. [PubMed] [Google Scholar]
134. Reeves AE, Koenigsknecht MJ, Bergin IL, et al. Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect Immun. 2012;80(11):3786–3794. [PMC free article] [PubMed] [Google Scholar]
135. Kamiya S, Yamakawa K, Ogura H, et al. Effect of various sodium taurocholate preparations on the recovery of Clostridium difficile spores. Microbiol Immunol. 1987;31(11):1117–1120. [PubMed] [Google Scholar]
136. Sorg JA, Sonenshein AL. Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol. 2008;190(7):2505–2512. [PMC free article] [PubMed] [Google Scholar]
137. Sorg JA, Sonenshein AL. Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. J Bacteriol. 2009;191(3):1115–1117. [PMC free article] [PubMed] [Google Scholar]
138. Koenigsknecht MJ, Theriot CM, Bergin IL, et al. Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract. Infect Immun. 2015;83(3):934–941. [PMC free article] [PubMed] [Google Scholar]
139. Buffie CG, Bucci V, Stein RR, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517(7533):205–208. [PMC free article] [PubMed] [Google Scholar]
140. Peterson LR, Olson MM, Shanholtzer CJ, et al. Results of a prospective, 18-month clinical evaluation of culture, cytotoxin testing, and culturette brand (CDT) latex testing in the diagnosis of Clostridium difficile-associated diarrhea. Diagn Microbiol Infect Dis. 1988;10(2):85–91. [PubMed] [Google Scholar]
141. Walker RC, Ruane PJ, Rosenblatt JE, et al. Comparison of culture, cytotoxicity assays, and enzyme-linked immunosorbent assay for toxin A and toxin B in the diagnosis of Clostridium difficile-related enteric disease. Diagn Microbiol Infect Dis. 1986;5(1):61–69. [PubMed] [Google Scholar]
142. Shanholtzer CJ, Willard KE, Holter JJ, et al. Comparison of the VIDAS Clostridium difficile toxin A immunoassay with C difficile culture and cytotoxin and latex tests. J Clin Microbiol. 1992;30(7):1837–1840. [PMC free article] [PubMed] [Google Scholar]
143. Sloan LM, Duresko BJ, Gustafson DR, et al. Comparison of real-time PCR for detection of the tcdC gene with four toxin immunoassays and culture in diagnosis of Clostridium difficile infection. J Clin Microbiol. 2008;46(6):1996–2001. [PMC free article] [PubMed] [Google Scholar]
144. Aichinger E, Schleck CD, Harmsen WS, et al. Nonutility of repeat laboratory testing for detection of Clostridium difficile by use of PCR or enzyme immunoassay. J Clin Microbiol. 2008;46(11):3795–3797. [PMC free article] [PubMed] [Google Scholar]
145. Drees M, Snydman DR, O'Sullivan CE. Repeated enzyme immunoassays have limited utility in diagnosing Clostridium difficile. Eur J Clin Microbiol Infect Dis. 2008;27(5):397–399. [PubMed] [Google Scholar]
146. Nemat H, Khan R, Ashraf MS, et al. Diagnostic value of repeated enzyme immunoassays in Clostridium difficile infection. Am J Gastroenterol. 2009;104(8):2035–2041. [PubMed] [Google Scholar]
147. Renshaw AA, Stelling JM, Doolittle MH. The lack of value of repeated Clostridium difficile cytotoxicity assays. Arch Pathol Lab Med. 1996;120(1):49–52. [PubMed] [Google Scholar]
148. Goldenberg SD, Cliff PR, Smith S, et al. Two-step glutamate dehydrogenase antigen real-time polymerase chain reaction assay for detection of toxigenic Clostridium difficile. J Hosp Infect. 2010;74(1):48–54. [PubMed] [Google Scholar]
149. Novak-Weekley SM, Marlowe EM, Miller JM, et al. Clostridium difficile testing in the clinical laboratory by use of multiple testing algorithms. J Clin Microbiol. 2010;48(3):889–893. [PMC free article] [PubMed] [Google Scholar]
150. Wren MW, Kinson R, Sivapalan M, et al. Detection of Clostridium difficile infection: a suggested laboratory diagnostic algorithm. Br J Biomed Sci. 2009;66(4):175–179. [PubMed] [Google Scholar]
151. Crobach MJ, Dekkers OM, Wilcox MH, et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): data review and recommendations for diagnosing Clostridium difficile-infection (CDI) Clin Microbiol Infect. 2009;15(12):1053–1066. [PubMed] [Google Scholar]
152. Snell H, Ramos M, Longo S, et al. Performance of the TechLab C. DIFF CHEK-60 enzyme immunoassay (EIA) in combination with the C. difficile Tox A/B II EIA kit, the Triage C. difficile panel immunoassay, and a cytotoxin assay for diagnosis of Clostridium difficile-associated diarrhea. J Clin Microbiol. 2004;42(10):4863–4865. [PMC free article] [PubMed] [Google Scholar]
153. Sunkesula VC, Kundrapu S, Muganda C, et al. Does empirical Clostridium difficile infection (CDI) therapy result in false-negative CDI diagnostic test results? Clin Infect Dis. 2013;57(4):494–500. [PubMed] [Google Scholar]
154. Dubberke ER, Han Z, Bobo L, et al. Impact of clinical symptoms on interpretation of diagnostic assays for Clostridium difficile infections. J Clin Microbiol. 2011;49(8):2887–2893. [PMC free article] [PubMed] [Google Scholar]
155. Planche TD, Davies KA, Coen PG, et al. Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C difficile infection. Lancet Infect Dis. 2013;13(11):936–945. [PMC free article] [PubMed] [Google Scholar]
156. Polage CR, Gyorke CE, Kennedy MA, et al. Overdiagnosis of Clostridium difficile Infection in the Molecular Test Era. JAMA Intern Med. 2015;175(11):1792–1801. [PMC free article] [PubMed] [Google Scholar]
157. Teasley DG, Gerding DN, Olson MM, et al. Prospective randomised trial of metronidazole versus vancomycin for Clostridium-difficile-associated diarrhoea and colitis. Lancet. 1983;2(8358):1043–1046. [PubMed] [Google Scholar]
158. Cohen SH, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA) Infect Control Hosp Epidemiol. 2010;31(5):431–455. [PubMed] [Google Scholar]
159. Zar FA, Bakkanagari SR, Moorthi KM, et al. A comparison of vancomycin and metronidazole for the treatment of Clostridium difficile-associated diarrhea, stratified by disease severity. Clin Infect Dis. 2007;45(3):302–307. [PubMed] [Google Scholar]
160. Johnson S, Louie TJ, Gerding DN, et al. Vancomycin, metronidazole, or tolevamer for Clostridium difficile infection: results from two multinational, randomized, controlled trials. Clin Infect Dis. 2014;59(3):345–354. [PubMed] [Google Scholar]
161. Cornely OA, Crook DW, Esposito R, et al. Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: a double-blind, non-inferiority, randomised controlled trial. Lancet Infect Dis. 2012;12(4):281–289. [PubMed] [Google Scholar]
162. Cornely OA, Miller MA, Louie TJ, et al. Treatment of first recurrence of Clostridium difficile infection: fidaxomicin versus vancomycin. Clin Infect Dis. 2012;55(Suppl 2):S154–161. [PMC free article] [PubMed] [Google Scholar]
163. Louie TJ, Miller MA, Mullane KM, et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med. 2011;364(5):422–431. [PubMed] [Google Scholar]
164. Bauer MP, Kuijper EJ, van Dissel JT, et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): treatment guidance document for Clostridium difficile infection (CDI) Clin Microbiol Infect. 2009;15(12):1067–1079. [PubMed] [Google Scholar]
165. Surawicz CM, Brandt LJ, Binion DG, et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol. 2013;108(4):478–498. quiz 499. [PubMed] [Google Scholar]
166. Hamilton MJ, Weingarden AR, Sadowsky MJ, et al. Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. Am J Gastroenterol. 2012;107(5):761–767. [PubMed] [Google Scholar]
167. Kelly CR, Ihunnah C, Fischer M, et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol. 2014;109(7):1065–1071. [PMC free article] [PubMed] [Google Scholar]
168. Kelly CR, Khoruts A, Staley C, et al. Effect of Fecal Microbiota Transplantation on Recurrence in Multiply Recurrent Clostridium difficile Infection: A Randomized Trial. Ann Intern Med. 2016;165(9):609–616. [PMC free article] [PubMed] [Google Scholar]
169. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–415. [PubMed] [Google Scholar]
170. Youngster I, Russell GH, Pindar C, et al. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA. 2014;312(17):1772–1778. [PubMed] [Google Scholar]
171. Youngster I, Sauk J, Pindar C, et al. Fecal microbiota transplant for relapsing Clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. Clin Infect Dis. 2014;58(11):1515–1522. [PMC free article] [PubMed] [Google Scholar]
172. Neal MD, Alverdy JC, Hall DE, et al. Diverting loop ileostomy and colonic lavage: an alternative to total abdominal colectomy for the treatment of severe, complicated Clostridium difficile associated disease. Ann Surg. 2011;254(3):423–427. discussion 427–429. [PubMed] [Google Scholar]
173. Johnson S, Homann SR, Bettin KM, et al. Treatment of asymptomatic Clostridium difficile carriers (fecal excretors) with vancomycin or metronidazole. A randomized, placebo-controlled trial. Ann Intern Med. 1992;117(4):297–302. [PubMed] [Google Scholar]
174. Swale A, Miyajima F, Roberts P, et al. Calprotectin and lactoferrin faecal levels in patients with Clostridium difficile infection (CDI): a prospective cohort study. PLoS One. 2014;9(8):e106118. [PMC free article] [PubMed] [Google Scholar]
175. D'Haens G, Ferrante M, Vermeire S, et al. Fecal calprotectin is a surrogate marker for endoscopic lesions in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18(12):2218–2224. [PubMed] [Google Scholar]
176. Jackson M, Olefson S, Machan JT, et al. A High Rate of Alternative Diagnoses in Patients Referred for Presumed Clostridium difficile Infection. J Clin Gastroenterol. 2016;50(9):742–746. [PMC free article] [PubMed] [Google Scholar]
177. McFarland LV, Surawicz CM, Rubin M, et al. Recurrent Clostridium difficile disease: epidemiology and clinical characteristics. Infect Control Hosp Epidemiol. 1999;20(1):43–50. [PubMed] [Google Scholar]
178. Aboudola S, Kotloff KL, Kyne L, et al. Clostridium difficile vaccine and serum immunoglobulin G antibody response to toxin A. Infect Immun. 2003;71(3):1608–1610. [PMC free article] [PubMed] [Google Scholar]
179. Kelly CP. Immune response to Clostridium difficile infection. Eur J Gastroenterol Hepatol. 1996;8(11):1048–1053. [PubMed] [Google Scholar]
180. Kyne L, Warny M, Qamar A, et al. Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N Engl J Med. 2000;342(6):390–397. [PubMed] [Google Scholar]
181. Kyne L, Warny M, Qamar A, et al. Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet. 2001;357(9251):189–193. [PubMed] [Google Scholar]
182. Salcedo J, Keates S, Pothoulakis C, et al. Intravenous immunoglobulin therapy for severe Clostridium difficile colitis. Gut. 1997;41(3):366–370. [PMC free article] [PubMed] [Google Scholar]
183. Garey KW, Sethi S, Yadav Y, et al. Meta-analysis to assess risk factors for recurrent Clostridium difficile infection. J Hosp Infect. 2008;70(4):298–304. [PubMed] [Google Scholar]
184. Sougioultzis S, Kyne L, Drudy D, et al. Clostridium difficile toxoid vaccine in recurrent C difficile- associated diarrhea. Gastroenterology. 2005;128(3):764–770. [PubMed] [Google Scholar]
185. Lowy I, Molrine DC, Leav BA, et al. Treatment with monoclonal antibodies against Clostridium difficile toxins. N Engl J Med. 362(3):197–205. [PubMed] [Google Scholar]
186. Wilcox MH, et al. Phase 3 Double-blind Study of Actoxumab (ACT) & Bezlotoxumab (BEZ) for Prevention of Recurrent C. difficile Infection (rCDI) in Patients on Standard of Care (SoC) Antibiotics (MODIFY I). Presented at: Interscience Conference on Antimicrobial Agents and Chemotherapy; Sept. 17–21, 2015; San Diego. [Google Scholar]
187. Gerding DN, et al. Phase 3 Double-Blind Study of Bezlotoxumab (BEZ) Alone & with Actoxumab (ACT) for Prevention of Recurrent C. difficile Infection (rCDI) in Patients on Standard of Care (SoC) Antibiotics (MODIFY II). Presented at: Interscience Conference on Antimicrobial Agents and Chemotherapy; Sept. 17–21, 2015; San Diego. [Google Scholar]
188. Rupnik M, Avesani V, Janc M, et al. A novel toxinotyping scheme and correlation of toxinotypes with serogroups of Clostridium difficile isolates. J Clin Microbiol. 1998;36(8):2240–2247. [PMC free article] [PubMed] [Google Scholar]
189. Lemee L, Dhalluin A, Pestel-Caron M, et al. Multilocus sequence typing analysis of human and animal Clostridium difficile isolates of various toxigenic types. J Clin Microbiol. 2004;42(6):2609–2617. [PMC free article] [PubMed] [Google Scholar]
190. Didelot X, Eyre DW, Cule M, et al. Microevolutionary analysis of Clostridium difficile genomes to investigate transmission. Genome Biol. 2012;13(12):R118. [PMC free article] [PubMed] [Google Scholar]
191. Songer JG, Trinh HT, Killgore GE, et al. Clostridium difficile in retail meat products, USA, 2007. Emerg Infect Dis. 2009;15(5):819–821. [PMC free article] [PubMed] [Google Scholar]
192. de Boer E, Zwartkruis-Nahuis A, Heuvelink AE, et al. Prevalence of Clostridium difficile in retailed meat in the Netherlands. Int J Food Microbiol. 2011;144(3):561–564. [PubMed] [Google Scholar]
193. Metcalf DS, Costa MC, Dew WM, et al. Clostridium difficile in vegetables, Canada. Lett Appl Microbiol. 2010;51(5):600–602. [PubMed] [Google Scholar]
194. Hoffer E, Haechler H, Frei R, et al. Low occurrence of Clostridium difficile in fecal samples of healthy calves and pigs at slaughter and in minced meat in Switzerland. J Food Prot. 2010;73(5):973–975. [PubMed] [Google Scholar]
195. Weese JS, Reid-Smith RJ, Avery BP, et al. Detection and characterization of Clostridium difficile in retail chicken. Lett Appl Microbiol. 2010 [PubMed] [Google Scholar]
196. Jobstl M, Heuberger S, Indra A, et al. Clostridium difficile in raw products of animal origin. Int J Food Microbiol. 2010;138(1–2):172–175. [PubMed] [Google Scholar]
197. Houser BA, Soehnlen MK, Wolfgang DR, et al. Prevalence of Clostridium difficile toxin genes in the feces of veal calves and incidence of ground veal contamination. Foodborne Pathog Dis. 2012;9(1):32–36. [PubMed] [Google Scholar]
198. Von Abercron SM, Karlsson F, Wigh GT, et al. Low occurrence of Clostridium difficile in retail ground meat in Sweden. J Food Prot. 2009;72(8):1732–1734. [PubMed] [Google Scholar]
199. Harvey RB, Norman KN, Andrews K, et al. Clostridium difficile in poultry and poultry meat. Foodborne Pathog Dis. 2011;8(12):1321–1323. [PubMed] [Google Scholar]
200. Harvey RB, Norman KN, Andrews K, et al. Clostridium difficile in retail meat and processing plants in Texas. J Vet Diagn Invest. 2011;23(4):807–811. [PubMed] [Google Scholar]
201. Nguyen GC, Kaplan GG, Harris ML, et al. A national survey of the prevalence and impact of Clostridium difficile infection among hospitalized inflammatory bowel disease patients. Am J Gastroenterol. 2008;103(6):1443–1450. [PubMed] [Google Scholar]
202. Paudel S, Zacharioudakis IM, Zervou FN, et al. Prevalence of Clostridium difficile infection among solid organ transplant recipients: a meta-analysis of published studies. PLoS One. 2015;10(4):e0124483. [PMC free article] [PubMed] [Google Scholar]
203. Guddati AK, Kumar G, Ahmed S, et al. Incidence and outcomes of Clostridium difficile-associated disease in hematopoietic cell transplant recipients. Int J Hematol. 2014;99(6):758–765. [PubMed] [Google Scholar]
204. Lee CH, Steiner T, Petrof EO, et al. Frozen vs Fresh Fecal Microbiota Transplantation and Clinical Resolution of Diarrhea in Patients With Recurrent Clostridium difficile Infection: A Randomized Clinical Trial. JAMA. 2016;315(2):142–149. [PubMed] [Google Scholar]
What Is Phenol Solution Used for C Diff
Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501328/
0 Response to "What Is Phenol Solution Used for C Diff"
Post a Comment